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Mixture of changing uniaxial micellar forms in lyotropic biaxial nematics

E. F. Henriquesa*, C. B. Passosa, V. B. Henriquesb and L. Q. Amaralb

aInstituto de Fı́sica e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900 Pelotas, RS, Brasil; bInstituto

de Fı́sica, Universidade de São Paulo, Caixa Postal 66318, 05389-970 São Paulo, SP, Brasil

(16 January 2007; final form 8 February 2008)

Lyotropic nematics consisting of surfactant–cosurfactant water solutions may present a biaxial phase or direct
U(+)«U(2) transitions, in different regions of the temperature-relative concentration phase diagram, for
different systems and compositions. We propose that these may be related to changes of uniaxial micellar form,
which may occur either smoothly or abruptly. Smooth change of cylinder-like into disc-like shapes requires a
distribution of Maier–Saupe interaction constants and we consider two limiting cases for the distribution of
forms: a single Gaussian and a double Gaussian. Alternatively, an abrupt change of form is described by a
discontinuous distribution of interaction constants. Our results show that the dispersive distributions yield a
biaxial phase, while an abrupt change of shape leads to coexistence of uniaxial phases. Fitting the theory to the
experiment for the ternary system KL/decanol/D2O leads to transition lines in very good agreement with
experimental results. In order to rationalise the results of the comparison, we analyse temperature and
concentration form dependence, which connects micellar and experimental macroscopic parameters. Physically
consistent variations of micellar asymmetry, amphiphile partitioning and volume are obtained. To the best of the
authors’ knowledge, this is the first truly statistical microscopic approach that is able to model experimentally
observed lyotropic biaxial nematic phases.

Keywords: biaxial nematics; statistical model; mixing and phase separation; micelle form

1. Introduction

The symmetry of nuclear magnetic resonance (NMR)

and X-ray diffraction results on oriented lyotropic

nematic phases in amphiphile/water/additive systems

has led to the proposal of micelles of cylindrical form

in NC phases or discotic form in ND phases (1–3). The

nematic NC domain usually occurs near a hexagonal

phase, with the ND region near a lamellar phase. The

hexagonal and lamellar phases are made of, respec-

tively, cylindrical micelles and planar bilayer aggre-

gates (4, 5).

The discovery of a biaxial nematic lyomesophase

Nbx in the potassium laurate (KL)/D2O/decanol

system (6), between lyotropic nematic phases with

diamagnetic and optical anisotropies of opposite sign

near a re-entrant isotropic phase (6), created doubts

regarding the form and symmetry of the micellar

objects (7, 8).

The search for thermotropic biaxial phases was

initially unsuccessful, but recently there has been

strong indications that thermotropic biaxial phases

may exist (9). Biaxial molecular systems, such as side-

chain polymer (10), non-linear molecules of boomer-

ang types (11, 12) and organo siloxane tetrapodes

(13) were reported to exhibit biaxial phases.

Before the discovery of the lyotropic biaxial

phase, theoretical papers predicted the existence of

a biaxial nematic phase for systems of biaxially

symmetrical molecules interacting either through soft

Maier–Saupe energy (14, 15) or via the hard Onsager

interactions (16, 17). Freiser’s initial proposal of a

biaxial phase for particles of low symmetry was soon

followed by the idea that mixtures of plate-like and

rod-like molecules (18) could also be responsible for

biaxial phases. However, in a large number of cases,

the biaxial phase proved to be unstable against

demixing of the particles of two different shapes

(19–23), leading to phase coexistence of an NC and an

ND phase.

Earlier Landau theory (24) developed for the

nematic–isotropic transition was generalised to

include the possibility of axial anisotropies of

different sign (25, 26) and yielded phase diagrams

of different topologies, in which two uniaxial phases

may coexist or be separated by an intermediary

biaxial phase. Both cases occur in lyotropic systems

(27). However, Landau theory is based on arguments

of symmetry for the macroscopic tensor order

parameter (28), and cannot by itself identify the

relevant physical parameters, such as temperature,

pressure or concentration. Those are implicit in the

coefficients of the expansion, and cannot be estab-

lished in the absence of a microscopic statistical

theory (26). Thus, Landau theory is unable to

distinguish between the two possibilities for the
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origin of the biaxial phase: biaxial particles or

mixtures of uniaxial particles.

Although mesogenic molecules may deviate from
cylindrical symmetry, this is not enough to lead to

biaxial phases, since in most cases the uniaxial

nematic phase is expected to freeze before the

transition to the biaxial nematic can occur (29). For

thin films, the surface can induce an optical biaxiality

in the sample, even if the bulk phase is uniaxial.

Many compounds, which showed biaxiality in cono-

scopy, proved to be uniaxial in the bulk when
observed with NMR spectroscopy (29).

Statistical microscopic theories that are under

consideration to explain the recently observed ther-
motropic biaxial phases take biaxial molecules

interacting via orientational intermolecular potentials

(26, 31, 32). An important point to note is that, in the

thermotropic biaxial nematics, no observation is

made of axiality rotation of the nematic phases, as

is the case in lyotropic systems (6, 10–13, 30). Thus,

the discovery of thermotropic biaxial phases for

compounds of molecules with no axial symmetry
brings back the question of the origin of biaxiality in

lyotropics, since micelles do not have that same

intrinsic biaxiality as new biaxial molecules.

Molecular-phenomenological theories focused on
lyotropics, with fixed object symmetry (33), were able

to simulate several aspects of the experimental phase

diagrams, of either cylindrical or discotic objects,

particularly the transitions from uniaxial nematic NC

and ND phases to related phases with positional

order. This is achieved by taking into account the

aggregation process. However, the NC and ND phases

are never present at the same time in such phase
diagrams.

On the other hand, re-entrant behaviour of the

nematic into the isotropic phase, as in KL, is
impossible to rationalise without temperature effects

on the form of the micellar object (34). A change of

form with temperature may also be expected to occur

in the transformation process of cylinders into discs.

The diversity of the experimental lyotropic phases

is a challenge to molecular theories. The existence of

first-order NC–ND transitions in sodium decyl (SDS)

and dodecyl (SLS) sulfate/water/decanol, for

instance, gives a strong indication (27) that micelles

are changing form. It was shown by Amaral and

colleagues (35, 36) that the NC–ND transition for
these three systems (KL, SDS and SLS) takes place at

essentially the same decanol/amphiphile molar ratio.

In the more diluted isotropic phase, it was shown that

the addition of decanol promotes change of micellar

form, from cylinder-like to disc-like, at about the

same decanol/SLS molar ratio (37). It was later

shown that the system SLS sulfate/decanol/water also

presents two small biaxial islands of opposed

magnetic alignment between the NC and ND domain

in the concentration versus temperature phase

diagram, denoted by Nz
bx and N{

bx (see (38)). In the

latter case, the phase transitions were concluded to be

first order. Biaxial phases have been reported in other

lyotropic ternary systems, as in the SLS/hexadecanol/

water system (39). The system tetra decyltrimethyl
ammonium bromide/n-decanol/water also shows two

distinct biaxial nematic mesophases with opposite

diamagnetic and optical anisotropies (40).

Lyotropic biaxial phases have bulk biaxiality, as

detected by deuterium NMR spectroscopy in static

and dynamic measurements in the system KL/

decylammonium hydrochloride/water (41). A recent

work on the temperature dependence of refractive

indexes in the (KL)/D2O/decanol system revealed

values compatible with the biaxial phase correspond-

ing to a mixture of the two uniaxial forms (42).

The phase sequence ND–Nbx–NC with decreasing

relative cosurfactant concentration values, at fixed

temperature, is doubtless correlated with a change
between two uniaxial forms. A micelle shape trans-

formation from cylindrical to planar form, as a

function of increase in relative co-surfactant concen-

tration, has been modelled in terms of the elastic

bending energy due to micelle curvature (36), since

the tendency of decanol molecules to prefer less

curved surfaces is well known (43).

To model the the complementary phase sequence

ND–Nbx–NC with temperature, at fixed relative con-

centrations, we propose that, in this region, micelles

are changing form. This change of form may be either

smooth or abrupt. In the first case, a homogeneous
mixture of cylinders and discs will be present. Phase

separation of the aggregates of different geometry is

prevented precisely by the fact that forms are in

exchange condition in the biaxial phase.

In a previous paper (44), a homogeneously

distributed mixture of uniaxial micelles of forms

ranging from discs to cylinders was modelled using

soft quadrupolar interactions with a continuous

single Gaussian distribution of quasi-quadrupoles.

The theory yields an intermediary stable biaxial phase

in the region of small average anisometry. The biaxial
phase is a result of the mixture in the Gaussian

distribution with small mean anisometry. Demixing is

prevented by the spatial homogeneity of the random

distribution of forms.

In this study, we generalise our previous approach

in order to include the possibilities of abrupt or

continuous change of form. Qualitative comparison

with the experimental phase diagram of Yu and Saupe

(6), as well as SDS/water/decanol systems displaying no

biaxial phase, can then be undertaken. In the former
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case, we were also able to present a quantitative

comparison from a micellar standpoint, adopting

explicit geometric models for the micelles and form

change according to partitioning of the surfactant, in

the spirit of the work of Amaral and colleagues (36).

This article is organised as follows. The statistical

model is presented in section 2. Results for the chosen

quadrupole distributions are shown in section 3.

Comparisons between the experimental and theore-

tical phase diagrams are presented in section 4,

through simple linear fitting of the model parameters.

The model allows determination of the numerical

phase biaxiality, and a discussion of the extent to

which these might be compared with experimental

values from the literature is given. In section 5, the

theoretical results are interpreted within the adopted

geometric modelling for the aggregates. Final com-

ments are given in section 6.

2. The model

Amphiphile molecules in solution spontaneously

aggregate into thermodynamically stable micelles

and bilayers (45), with forms depending on the

geometry of the molecules (46).

As discussed in the introduction, experimental and

theoretical studies evidence that micelles in ternary

systems amphiphile/decanol/water may change form as

a function of relative concentration, because decanol

favours flatness of the interfaces. Both amphiphile and

decanol are within the micellar aggregate and a change

in form occurs with rearrangements of molecules inside

the micelle. However, a complete theory of micelle

transformation is not yet available.

In this paper the existence of micelles of two

uniaxial forms, spherocylinders and discs (Figure 1),
is postulated, but the micelles are changing form, size

and aggregation number. In order to represent the

change of form from cylinders to discs, under

variations of temperature T or relative concentration

P, we admit two possibilities: a smooth transforma-

tion of form of a polydisperse solution, or an abrupt

change of monodisperse form. Therefore, we consider

a dispersion of uniaxial particles (micelles themselves,
not their constituent molecules), which presents a

distribution of anisometries mi that interact through

an orientational potential. The distributions are

necessarily ad-hoc because the form changing process

itself cannot be modelled. It should be stressed that

our model is not analogous to either mixtures of fixed

forms or flexible molecules.

2.1. Energy

Two particles i and j interact with energy (15, 47)

Eij~{ 3=4ð Þw rij

� �
lilj 3 enni

:ennj

� �2
{1

h i
, ð1Þ

where li represents the particle quadrupole (which

depends on anisometry mi) and enni represents the

direction vector of symmetry of the uniaxial particle

i. The dispersion may include particles of different

shapes. Objects with li.0 are spherocylinders, whereas

particles with li,0 have the form of rounded discs (see

Figure 1) (44). Thus, in order to lower the energy, two

cylinders (or discs) tend to be parallel, whereas a disc
and a cylinder tend to align orthogonally.

The overall energy of the system, for a particular

distribution of anisometries, is given by

E~ lif g, ennif gð Þ~
X

i, jð Þ
Ei, j: ð2Þ

Note that the interaction coefficients are not neces-

sarily uniform.

2.2. Smooth form transformation

To model a smooth transition of form, we assume a

strong dispersion of anisometries in the cylinder–disc

transition region, in dynamic equilibrium. In this
region, average anisometry should remain small.

Accordingly, the system must be described by a set

of li. The average form associated to l0~li depends

on temperature and concentration, i.e. l05l0(T, P).

In the presence of a cylinder–disc mixture, in the

transition region, two different possibilities arise:

Figure 1. Geometrical models of the micelles: l is a fixed
mean hydrocarbon chain length for a given temperature;
n5H/D is defined for both shapes.
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either (i) relaxation times for micelle form transition

disc ' cylinder is much smaller than the relaxation

times for spatial rearrangement of the continuum

of disc-like and cylinder-like aggregates, i.e.

tform distribution%tspatial distribution; or, inversely, (ii)

tform distribution&tspatial distribution. In the first situation,

form transformation of micelles takes place at much

shorter times compared with micelle diffusion, thus

yielding a homogeneous mixture. The second case, in

which micelle translation occurs at rapid rates, as

compared with micelle form transformation, is

analogous to a mixture of discs and cylinders of

fixed shape, and phase separation is to be expected in

most cases (19, 20, 23). As the treatment of impurity

distribution in solids also displays these two possibi-

lities, we may borrow the corresponding terminology:

the first is a ‘‘quenched’’ mixture, in which the spatial

distribution is frozen in, whereas the second is an

‘‘annealed’’ mixture, for which particles may diffuse

so as to find an equilibrium distribution (48, 49). In

our modelling, orientational degrees of freedom are

allowed to find an equilibrium distribution for both

cases, whereas the spatial distribution is allowed to

search for equilibrium only in the annealed case.

Calculation of free energies is very different for

the two situations (48). In the first case, assuming a

dispersion of anisometries described by a certain

probability distribution p(l) of quadrupoles, we must

calculate the ‘‘quenched’’ free energy given by

FQ T , Pð Þ~{kBT ln Z T , lif gð Þ½ �

~{kBT

ð
P
i

p lið Þdli

h i
ln ZQ T , lif gð Þ
� �

,
ð3Þ

where the partition function of a given set {li} is

ZQ T , lif gð Þ~
X

enni

� �
exp {

X

i, jð Þ
bEi, j lif g, ennif gð Þ

2

4

3

5, ð4Þ

with the interaction energy from Equations (1) and

(2).

In the second case, the ‘‘annealed’’ free energy

should be given by

FA T , Pð Þ~{kBT ln ZA T , Pð Þ½ �, ð5Þ

where the ‘‘annealed’’ partition function

ZA T , l0 T , Pð Þf gð Þ~
X

lif g

X

enni

� �
exp {

X
bEi, j

h

lif g, ennif gð Þ
i

ð6Þ

demands a summation over all possible configura-

tions of anisometries {li}, restricted to those leading

to a definite average quadrupole l0 T , Pð Þ~
P

i li=N,

where N is the number of particles. Interaction energy

is again taken from Equations (1) and (2).

We assume that smooth micelle form transforma-

tion occurs according to the first case. This assump-

tion is suggested by the fact that form transformation

is related to molecular diffusion rate, whereas spatial

rearrangement is a consequence of micelle diffusion.

Thus, in this study, the statistical properties of the

model are obtained through Equations (3) and (4).

Different possibilities for the dispersion of micelle

form within the solution, described by choices of p(l),

were analysed. We have considered a Gaussian

distribution

pG lð Þ~exp { l{l0ð Þ2
.

2s2
0

h i. ffiffiffiffiffiffi
2p
p

s0, ð7Þ

in which the sign of the mean quadrupole l0 indicates

the predominance of cylindrical or discotic shape,

and a double delta distribution

pD lð Þ~d l{l0{s0ð Þ=2zd l{l0zs0ð Þ=2, ð8Þ

which mimics a double Gaussian in a simplified form.

In Figure 2, we show different Gaussian distributions

with the same average quadrupole l0: the top left plot

shows a single Gaussian distribution of Equation (7),

and the other three plots are double Gaussian

distributions with different dispersions. In the top

right distribution, each Gaussian has a very small

dispersion, similar to double delta distributions of

Equation (8). In the bottom left distribution, disper-

sions are intermediate, so that the two Gaussian

functions remain separated; in the bottom right plot,

however, dispersions are large, the two Gaussians are

indistinguishable and the plot is quantitatively similar

to the single Gaussian of the first plot.

2.3. Abrupt form transformation

An abrupt cylinder–disc transformation requires a

monodisperse micelle solution. This may be described

by a discontinuous null dispersion theta distribution

p lð Þ~ 1{H lzl�ð ÞzH l{l�ð Þ½ �d l{l0ð Þ: ð9Þ

Here, l*5l(P, T) is some physical limit for l0, which

may depend on relative concentration P and tem-

perature T. This would correspond to the single

Gaussian distribution seen in Figure 2 in the limit of

null dispersion. In this case, Equations (3) and (5)

lead to identical free energies.
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3. Order parameters and mean-field Equations

A macroscopic order parameter can be defined in

terms of some static response function, such as the

anisotropic susceptibility traceless tensor eQQ. In the

simplest situations, this tensor is linearly related to

the ordering matrix eSS (see (28)):

eSS~
1

2

q{m 0 0

0 {q{m 0

0 0 2m

0

B@

1

CA, ð10Þ

where

m~
3

2
Sn2

zT{1=3
� �

ð11Þ

and

q~
3

2
Sn2

y{n2
xT: ð12Þ

Here, nx, ny and nz are the Cartesian components of
enni. Bars represent averages over p(l) and brackets

represent the thermal average. Thus, a uniaxial phase

is described by m?0 with q50, whereas for the

biaxial phase we must have both m?0 and q?0.

In spite of the microscopic uniaxial symmetry,

represented by the particle quadrupole moment

lxx5lyy2lzz/2, macroscopic biaxiality may arise in

the case of the homogeneous mixture, represented by

the Gaussian or delta bimodal distribution of forms

p(l), Equations (7) and (8), in the transition region.

For simplicity of calculations, we assume that the

directions are restricted to one of the three Cartesian

axes: enni~ +1, 0, 0ð Þ, (0, 0, ¡1) or (0, ¡1, 0). This has

been used in Onsager calculations (50), lattice

descriptions (17) and also in Maier–Saupe models

(34) and, despite some displacement of entropy

variations, does not alter the essential physics of the

model. Such a simplification will not hinder compar-

ison with the experimental phase diagram, since we

do not seek interpretation of experimental observa-

tions that would depend strongly on fluctuational

and correlational effects beyond mean-field descrip-

tion, such as critical exponent measurements (48).

The mean-field approximation used here is to take

w(rij),constant/N (see (51)), which is equivalent to

assuming that each micelle interacts with the average

orientation of its neighbours. For a particular set of

N quadrupoles, {li}, the partition function will be

integrable by two Gaussian identities (52), giving

Z(T, x, y), with x and y given by

x

J
~

ð
lp lð Þdl

2 sinh b xlð Þ
e{b ylð Þz2 cosh b xlð Þ ð13Þ

Figure 2. Single Gaussian (top left) and double Gaussian distribution with different dispersion constants and same average
mean quadrupole l050.1. Gaussians are centered at l050.1 (top left), l01520.1 and l0250.3 (top right and bottom graphs).
Dispersions are s051 (top left), s015s0250.01 (top right), s015s0250.1 (bottom left), s015s0250.25 (bottom right). The
bimodal distribution is obtained in the limit s015s0250.
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and

y

3J
z

2l0

3
~

ð
lp lð Þdl

2 cosh b xlð Þ
e{b ylð Þz2 cosh b xlð Þ, ð14Þ

where J represents the number density of micelles

through an average number Nv of neighbours to a

given micelle by J5(9/8)Nv. The order parameters are

given by

m~1{
3

2

ð
p lð Þdl

2 cosh b xlð Þ
e{b ylð Þz2 cosh b xlð Þ ð15Þ

and

q~
3

2

ð
p lð Þdl

2 sinh b xlð Þ
e{b ylð Þz2 cosh b xlð Þ: ð16Þ

We must solve Equations (13) and (14) for x and y

and insert these into Equations (15) and (16) in order

to establish the different phases of the system. Phase

stability is verified by the calculation of free energies.

For a system of identical particles (a monodis-

perse system), p(l) turns out to be a simple delta

function centred at some l0, and x and y

(Equations (13)–(14)) can be directly related to the

order parameters m and q (Equations (15)–(16)),

through m52y/2Jl0 and q53x/2Jl0. In such cases,

it can be seen by inspection that the zero temperature

solutions are uniaxial (x50) and biaxial behaviour is

absent, as expected.

In the case of a dispersive distribution of

quadrupoles, and consequently of forms, there is no

direct relation between the variables x, y and the

order parameters. Note that there is an analogous

situation with respect to the relation between the

microscopic tensor order parameter eSS and the

macroscopic order parameter eQQ (related to the

susceptibility), in the case of flexible molecules, for

thermotropic liquid crystals (28, 53).

4. Phase diagrams

The Gaussian distribution case was already consid-

ered (44) and we now compare its results with the

bimodal distribution. The null dispersion case will

also be discussed.

4.1. Mean-field results

The phase diagrams for the Gaussian and bimodal

distributions are entirely analogous, both displaying

a stable biaxial phase and a Landau point with l050

(null anisometry) at the same temperature

TL~9s2
0

�
2kB, as shown in Figure 3. We have defined

dimensionless temperature t~4kBT
�

9Nvs2
0 and

quadrupole d~l0

�
s0

ffiffiffi
2
p

, so that tL51/3 and dL50

are at the Landau point for both distributions.

The fact that the single and bimodal distributions

yield the same phases is an important result, because

the delta bimodal model is much simpler to handle

than the Gaussian distribution, and thus serves very

well as a first approximation. Moreover, the two

distributions interpolate between two limiting situa-

tions: a single Gaussian and two Gaussians of null

dispersion, as illustrated in Figure 2. This implies

that the intermediate cases (top right and bottom)

should also present a biaxial phase.

The mean-field critical biaxial–uniaxial lines near

the Landau point can be obtained from an expansion

in the biaxial order parameter q, from Equations (13)

and (16). They are given, in terms of a measurable

Kelvin critical temperature Tc, by

Tc~TL 1{kl
2=3
0 zo l

4=3
0

	 
h i
, ð17Þ

where k is a function of the moments of the

distributions of quadrupoles, Dj~ l{lð Þj, and is

given by k;(5D2/D6)1/3D4/9D6. Thus, the Gaussian

and the delta bimodal cases present slightly different

coefficients k. The uniaxial phases NC (cylindrical)

and ND (discotic) are present in the regions of

positive and negative mean quadrupoles, respectively,

corresponding to predominance of disc-like micelles

in the discotic phase and of cylinder-like aggregates in

the cylindrical phase. The use of the original model of

continuous enni directions would lead us to the same

basic results, with a slight change in the prefactors of

Equation (17), meaning that the biaxial phase would

be achieved with a lower energy cost than that

Figure 3. Mean-field theoretical phase diagrams for
Gaussian and delta bimodal distribution of quadrupoles.
The parameters t and d are explained in the text. A biaxial
phase Nbx separates a cylindrical NC from a discotic ND

phase. Solid lines represent critical transitions, with lower
transition temperatures for the delta bimodal distribution,
and dashed lines stand for the nematic–isotropic lines, with
lower transition temperatures for the Gaussian distribution.
Dots represent Monte Carlo simulation results for critical
Nbx–NC line.
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imposed by the discretisation procedure adopted.

Note that for the bimodal case, the biaxial phase is

restricted to the region |l0|/s0,1, which is the

condition of mixture for this distribution. As for

the Gaussian case, mixture is always a possibility, for

arbitrary l0/s0.

The behaviours of the mean-field order para-

meters m and q, as functions of temperature, are

presented in Figure 4, for small positive anisometry

(left) and near the Landau point for null average

anisometry l050 (right). In the first case (left), we

have a continuous Nbx–NC phase transition at a lower

temperature and a first-order NC–ISO transition at a

higher temperature. In the second case (right), both

transitions are continuous and take place at the same

temperature. Thus, the biaxial order parameter q

vanishes continuously, while the uniaxial nematic

order parameter m is discontinuous, at the transition,

for positive anisometry (l0.0), as in Figure 4 (left).

For null average anisometry (l050), both parameters

(m and q) go to zero smoothly at the Landau

temperature, as in Figure 4 (right).

The phase diagram presents no biaxial phase in

the case of the null dispersion theta distribution, that

is, for a solution of micelles of a single form, as

shown in Figure 5. The region |l|,l* would be

physically unavailable, and would correspond to an

abrupt change of form at some l*, leading to a direct

NC–ND transition.

4.2. Results from Monte Carlo simulations

In order to check that the phase diagram of the

polydisperse models is not an artefact of the mean-field

approach, we have performed Metropolis Monte Carlo

simulations (56, 57). We have considered particles of

different anisometries distributed randomly on a cubic

lattice with periodic boundary conditions. A vectorised

version of the Metropolis algorithm (58) was developed

(52). Measurements of ‘‘temporal’’ correlations (56)

allowed the design of good statistical samples.

Preliminary tests showed that the delta bimodal

distribution would again give a good representation

of the more complex Gaussian distribution (52).

We have thus undertaken detailed simulations for

the bimodal distribution, for cubic lattice sizes L56, 10,

16, 18, 20, with L(L21)2 micelles. The starting point in

all simulations is to settle a distribution of micelles

according to the bimodal distribution in each site, and it

was observed that different choices for this distribution

led to close results, so very few different distributions

were needed. For an L510 lattice, in which the results

were observed to be close to an infinite-sized lattice,

thermal equilibrium from different starting orientational

configurations took about 100 to 400 Monte Carlo steps

to be achieved, one Monte Carlo step corresponding to

Figure 4. Mean-field order parameters m and q (Equations (15) and (16)) as functions of temperature for small positive
anisometry (d50.2) and near the Landau point for null average anisometry (d50).

Figure 5. Sketch of the theoretical phase diagram for a null
dispersion distribution, the theta distribution, displaying a
non-physical region of quadrupoles and two uniaxial NC

and ND phases.
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a full sweep through the whole lattice. Characteristic

correlation times were measured to be of the order of 10

Monte Carlo steps, and typical runs were of 10,000

Monte Carlo steps, with the first 1000 discarded.

Simulation data for the Nbx–NC transition line,

obtained from the study of fluctuations of the biaxial

order parameter q (see (56, 57)), are presented in

Figure 3, for comparison with mean-field results, for

an L510 lattice. Five different distributions of micelles

were used at the Landau point, whereas only two were

needed for the other points of the uniaxial–biaxial tran-

sition. The overall number of measurements for each

point was 10 for the Landau point and 6 for the other

transition points. The infinite lattice Landau point

temperature obtained from finite-size scaling analysis

(56) is t50.238, lower than the value 1/3 of the mean

field, as expected. The order parameters in the biaxial

region are obtained from the simulations and shown in

Figure 6 for null average anisometry and L510.

5. Comparison with experiment

In this section, we compare our theory with experi-

ment by direct adjustment of our model parameters

with experimental phase diagrams. First we analyse

diagrams with biaxial phases, as is the case of the KL/

water/decanol system, and then the possibility of

coexistence of uniaxial phases, as in the system SDS/

water/decanol.

5.1. Biaxial phases

We propose a comparison of the experimental phase

diagram of Yu and Saupe (6), with the theoretical

prediction of Figure 3, near the Landau point. The

strong asymmetry with respect to the NC and ND

phases of the experimental phase diagram can be

dealt with through an expansion, up to first order, of

l0 into powers of KL fractional weight concentration,

Psurf5PKL, and temperature T, that reads

l0

s0
~aDpzbDt, ð18Þ

with Dp: PKL{PL
KL

� ��
PL

KL and Dt;(TL–T)/TL, the

distances in laurate concentration and temperature

from the Landau point. We take experimental points

to find a and b adjusting Equation (18) by compar-

ison with the theoretical critical lines given by

Equation (17). The experimental points taken for

the fitting are L~ PL
KL~0:2619, TL~317

� �
(Landau

point), B5(0.2596, 307) (a cylindrical-biaxial point),

and a point on the discotic-biaxial line, A5(0.2577,

307) (see (6)). Our comparison must not be extended

to low-temperature phases, as implicit in the above

expansion, which cannot account for the inversion of

behaviour with concentration observed below 30uC.

We can find a and b for the dispersive Gaussian

and delta bimodal distribution, both of which lead to

biaxial phases. We adopted the mean number of

neighbours Nv56 for numerical purposes, and we

found that comparison with experiment is essentially

unaffected by different choices. For the Gaussian

distribution, the fitting gives aG.1.26 and bG.0.50,

where G stands for Gaussian. The same procedure

yields aD.2.18 and bD.0.86 for the delta bimodal

case, showing that the delta bimodal distribution

leads to larger coefficients. Comparison between

theory and experiment is shown in Figure 7. The

Gaussian and bimodal descriptions are indistinguish-

able near the Landau point and the phase transition

lines coincide on the scale of the Figure. The two

distributions also differ in shape population variations.

For the double delta distribution, populations of

cylinders and discs are fixed at 50%, while only

quadrupoles change. As for the Gaussian case, we find

equal populations only very close to a bissecting line

inside the biaxial region crossing the Landau point.

Above this line we have population predominance of

discs and below predominance of cylinders. Population

variation along the diagram is expected as long as we

accept the system as polydisperse, although a bimodal

distribution, of which the double delta is a simplified

representation, may be considered a more realistic

description of micellar form change.

The comparison of the critical lines from theory

to experimental points allows coexistence lines to be

drawn without further fitting. The nematic–isotropic

lines can be drawn from the approximate expression

Figure 6. Order parameters m and q (Equations (11) and
(12)) from Monte Carlo simulations for a cubic lattice with
L510 compared with mean-field results for null average
anisometry l050. Monte Carlo infinite lattice Landau
temperature is tL50.238 from finite size scaling. Dotted (m)
and solid lines (q) represent mean-field results near the
Landau point. The mean-field Landau temperature is tL51/3.
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T~317z4:353|1023l2
0, for phase coexistence, as

imposed by the theory, and result as almost straight,

as a consequence of the smallness of l0 (of order of

10214) obtained by application of Equation (18). Note

that the predicted transition lines compare well to the

experiment, particularly for the ND–ISO coexistence.

Biaxiality of the model system is described by

properties of the tensorial order parameter eSS (Equa-

tion (10)). However, strict comparison with experi-

ment is not possible, for reasons we explain below.

The presence of biaxiality has been described for

lyotropic systems in terms of related quantities,

obtained from NMR and from different susceptibility

experiments. In NMR, the electric field gradient tensor

on deuterium, taken as uniaxial in the reference frame

of the O–D bond (6), displays biaxiality in the phase

reference frame, if the phase is biaxial (29, 41). A

biaxiality parameter g is obtained from NMR quad-

rupolar splittings, which depend on the field gradient

components qij, referred to as the phase symmetry

axes, through g5(qxx2qyy)/qzz, with |qzz|.|qyy|.|qxx|.

The electric field gradient tensor qij is proportional to

the ordering matrix SO{D
ij for the O–D bond, because

the unaveraged quadrupolar tensor has cylindrical

symmetry about this bond (10, 28), yielding

gO{D~ SO{D
xx {SO{D

yy

	 
.
SO{D

zz for the elements of

the O–D ordering matrix.

Alternatively, the ratio of NMR splittings, r, with

rO–D5n(90u)/n(0u), may be obtained under rotation of

samples, yielding the ratio SO{D
zz

.
SO{D

yy (see (6)).

Heavy water used as a probe in deuterium NMR

spectroscopy forms an essential component of the

lyotropic biaxial nematic. Therefore, in order to

compare the biaxiality parameter, which comes out of

the NMR experiment, gO–D, and that which results
from our theory, g5(Sxx2Syy)/Szz, additional model-

ling of water distribution on the uniaxial particles

which represents micelles would be required. Since

such modelling has not been a goal of our work, the

comparison we present below is strictly speculative in

nature.

In parallel to NMR results, experimental data on

different susceptibility properties may be organised

conveniently in terms of the symmetric al invariants

of the experimental tensor macroscopic order para-

meter eQQ (see (8, 42)). One of them, s3, defined as

s354QxxQyyQzz, is particularly useful in identifying a

biaxial phase.

In order to further explore our model properties,

we undertake two simplifying assumptions of quali-

tative nature: (i) we assume a tensor macroscopic
order parameter eQQ comparable to the model micro-

scopic order parameter eSS, so we make s35

4SxxSyySzz; (ii) we further take eSS and gSO{DSO{D as

comparable. As a consequence of (ii), r5Szz/Syy is

comparable to rO–D. Thus, g and es3s3~s3

�
S3

zz, which

behaves as s3, may be obtained from r. In Figure 8,

we present model calculation curves for the three

parameters r, g and s3, as functions of temperature,

at PKL50.2595. The sign inversion of s3 on crossing a

biaxial region has also been found in low-temperature

regions of the diagram, distant from the Landau

point, in which s3 was directly measured in terms of

the dielectric susceptibility tensor (8, 42). Maximum

biaxiality is too high for the mean-field case, as usual,

owing to the approximations involved, which neglect

fluctuations, as illustrated by the lower value shown

by Monte Carlo results.

Experimental values for the three parameters at
PKL50.2595 are also shown: values for rO–D (top of

Figure 8), are taken from Yu and Saupe’s work (6)

and values for es3s3 and g (bottom left and bottom right

of Figure 8) are calculated from rO–D. It should be

noted that the absence of a model relating O–D

bonds to the micellar orientations, which would make

theory really comparable to experiment, may be the

most important reason behind the discrepancies

noted inside the biaxial region.

The use of a non-symmetric anisometry distribu-

tion would lead to smoother theoretical curves,

particularly inside the biaxial region. For a contin-

uous distribution of the possible orientations of the

micellar axes, as opposed to the discrete distribution

of possible orientations adopted in this study, the

Figure 7. Experimental phase diagram by Yu and Saupe
(6) (dashed lines) compared with theory (solid lines). Here
NC and ND are as in Figure 1, L is the Landau point, Nbx is
the biaxial phase and A and B are the fitting points as
explained in the text.
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numerical values of the calculated parameters might

change slightly, but overall behaviour would not

suffer qualitative change.

5.2. Uniaxial nematic coexistence

Interpretation of the quadrupole distribution of case

(iii) may be as follows. We use l* to represent the

absolute value of quadrupoles at the surfactant

concentration Psurf5P* at which the change of

symmetry takes place, that is, at which micelle form

changes from disc (l,0) to cylinder (l.0). We thus

may assume the dependence of form on concentra-

tion and write linear expansions:

lc, d~+l�zac, dDPsurf ð19Þ

with DPsurf5Psurf2P*.

The T2Psurf phase diagram presents two uniaxial

phases with a form coexistence at P*. This coexistence

line ends at a point (Psurf5P*, T59(l*)2/16kB ln2). At

this point the two uniaxial phases coexist with the

isotropic phase. Figure 9 shows the corresponding

phase diagram. Note that differently the from the

previous case, in which a biaxial region is possible,

the coexistence end point is not critical. Such beha-

viour is presented by SDS/water/decanol (27, 35).

6. Tests for a microscopic micellar model near the

Landau point

In order to give a microscopic interpretation for

micellar change of form, we consider the micellar

geometries and, in accordance with proposals present

in the related literature, the corresponding partition

of decanol and laurate (43), as well as chain

Figure 8. Model biaxiality parameters (lines for mean-field, stars for Monte Carlo), calculated from the ordering matrix eSS
(Equation (10)), at PKL50.2595. Top graph is r, in the n(90u)/n(0u) axis. Bottom graphs are es3s3 (left) and g. See the text for
definitions. Dashed lines represent regions of numerical instabilities in mean-field calculations. For illustration, experimental
points of n(90u)/n(0u) from Yu and Saupe’s paper (6) are plotted in the top graph. Data for es3s3 and g, calculated from
experimental values of rD2O, under particular assumptions described in the text, are also shown. Experimental data are
represented as squares.

Figure 9. Sketch of an experimental phase diagram
corresponding to the discontinuous quadrupole distribu-
tion, the theta distribution, displaying no biaxial phase and
direct NC–ND transition at a surfactant concentration P*.
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contraction (59). We add specific assumptions for

micelle volume and relative density at the Landau

point. Our approach is as follows: (i) we model

micelle geometry as represented in Figure 1; (ii) we

model decanol as going preferentially to surfaces of

less curvature, also represented in Figure 1; (iii) we

relate quadrupoles to geometric parameters; (iv) we

assume equal micelle volumes and surfactant/cosur-

factant densities at the Landau point; (v) we include

chain contraction under increasing temperature. This

procedure is developed in Equations (20)–(28) and

allows description of anisometry behaviour with

temperature and relative concentration, given in

Equations (29) and (30).

We first separate l0 as an average representing

cylindrical shapes with quasi-quadrupoles lc and

average discotic shapes with ld, to introduce explicit

form dependence in the average quadrupole expres-

sions and make the Gaussian description closely

related to a more realistic bimodal quadrupole

distribution. So we write

l0~fdldzfclc, ð20Þ

with fc,d corresponding to the fractions of cylinders

and discs in the mixture. Here fc,d are calculated

taking l0/s0 to be small, near the Landau point. The

picture we propose is illustrated in Figure 10.

Considering the Gaussian distribution case and

Equation (18) we obtain

lc, d=s0~+
ffiffiffiffiffiffiffiffi
2=p

p
zaGDpzbGDt, ð21Þ

with aG.0 and bG.0. The implications are that

positive quadrupoles, associated with cylinders,

increase with laurate concentration PKL (Dp.0)

and decrease with temperature T (Dt,0) as we

move from the Landau point. As for negative

quadrupoles, associated with disc-like objects, their

absolute values decrease with PKL and increase with

temperature.

We now write quadrupoles lc and ld as functions

of micellar geometrical parameters. This was done

considering that the intermicelle potential may be

taken as suggested previously by a DLVO model

study (54). The quadrupoles li, resulting from a

multipole expansion of this potential, will be

integrals depending on some internal micellar density

and on the geometries of the micelles, given by

Figure 1. By imposing constant mean linear chain

length l, rounded discs will have fixed height H and

spherocylinders will have a fixed diameter D. Taking

n;H/D, we have

lc~Kc n2
czn3

c

� �
ð22Þ

for the spherocylinders, and

ld~{Kd
p

4nd
z

1

3n2
d

z
p

8n3
d

z
1

8n4
d

 !

ð23Þ

for the rounded discs. Here, nc and nd are related to

the anisometries mc and md, defined as the ratio of the

largest to the lowest linear dimension for each

correspondent micelle, by mc5nc+1 and md5(nd+1)/nd.

Expressions (22) and (23) for lc and ld must be

compared with Equation (21) for microscopic inter-

pretation of the quasi-quadrupoles dependence on

relative concentration PKL and temperature T. To

achieve this aim, we must first obtain the micellar

anisometries, Kc and Kd, at the Landau point. The

anisometries at the Landau point were calculated

with a partition model of surfactant and cosurfactant

in each form, as in previous studies (36, 55). The

global paraffinic volume of the hydrocarbon chains

in the micelle will be divided into Vpure, correspond-

ing to the part in which there is only laurate, and

Vmix, where decanol is also present. Molecular

volumes of decanol and laurate are, respectively, vdec

and vKL. Here, Ndec is the number of decanol

molecules per micelle, and the number of laurate

molecules, NKL, is divided into two parts, with

(NKL)pure corresponding to the part of the micelle in

which there is only laurate, and (NKL)mix to the part

in which there is a mixture of decanol and laurate. We

then define the ratio r;Vpure/Vmix for either of the

geometries of Figure 1. These ratios can also be

written assuming (43) that the decanol molecules are

located on the surfaces of less curvature, plane areas

Figure 10. Top: qualitative graphical representation of the
distribution p(l) of quadrupoles, with areas divided into
fractions of discs, fd, and cylinders fc. Bottom: graph of the
function lp(l). Areas represent mean disc fdldv0

� �
and

cylinder fclcv0
� �

quadrupoles.
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of rounded discs and bodies of spherocylinders, with

the corresponding volumes constituting Vmix.

Assuming the ratio of the number of KL to decanol

molecules per micelle, NKL/Ndec, to be the same as

[KL]/[dec] that prevails in the solution, we obtain

nc~
2

3

ccza

PKL=e{cc

, ð24Þ

for the spherocylinders, and

nd~{
3p

8
z

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2

16
z6

PKL=e{cd

cdza

� �s

, ð25Þ

for the rounded discs, invoking standard geometrical

formulae for the needed volumes. In these Equations,

c;(NKL)mix/Ndec and e50.10742 stands for the

conversion of KL molar fraction units into percen-

tage weight units of the experiment. We obtained

a;vdec/vKL.0.9168, with vdec and vKL given by

v527.4+26.9n (see (60, 61)), for chain volumes

containing n carbon atoms in the micelle. We have

n511 for KL, since the 12th carbon is in the polar

head, and n510 for decanol.

We impose the paraffinic volumes and number of

decanol or laurate molecules of different shapes to be

equal at the Landau point, as expected from a single

micelle changing its form. These two latter conditions

will lead us to

nL
c ~ nL

d

� �{2
zp 2nL

d

� �{1
, ð26Þ

and

nc

vdeczvKLcc

~
1

n2
d(vdeczvKLcd)

: ð27Þ

The solution of the Equations (24)–(27) for nc, nd,

cc and cd, at the Landau point, yields

nL
c ~2:57, nL

d ~1:00, cL
c ~1:74, cL

d ~0:119. From the

numbers above we obtain mL
c ~3:57 and mL

d ~2:00,

in reasonable agreement with known values at the

phase transition (36). Finally, going back to (22) and

(23), we get KL
c ~1:054|10{12 and KL

d ~1:52|10{11

at the Landau point.

We now extend the calculations to the region near

to the Landau point, taking into account the chain

length dependence of Kc,d. Using Kc,d,l5, by dimen-

sional analysis of the quadrupole integrals, and the

chain thermal contraction coefficient, (1/l)(Ll/LT).
21.661023K21 (see (59)), we obtain

Kc, d~KL
c, d 1z2:536Dtð Þ, ð28Þ

with KL
c, d being the Landau point values. Chain

volume has been regarded as constant, owing to its

small positive coefficient (59). Now we use Equa-

tions (21), (22) and (23) to obtain the anisometry

dependence on the experimental variables, taking

into account the dependence of Kc,d on temperature,

as in Equation (28). We obtain

mc~3:57z1:93 PKL{PL
KL

� �
{6:38|10{3

TL{T
� � ð29Þ

and

md~2:00{1:06 PKL{PL
KL

� �
{4:22|

10{3 TL{T
� �

:
ð30Þ

Anisometry behaviour predicted by Equations

(29) and (30) may be rationalised as follows: (i) both

micellar shapes become less anisometric as tem-

perature is lowered, and this behaviour is expected

under chain expansion, since disc height and cylinder

radius increase; (ii) as to laurate concentration,

PKL, its increment makes cylinders grow and discs

shrink, in accordance with the neighbouring nematic

phase behaviour along the diagram, hexagonal and

lamellar.

An additional result may also be derived with

respect to aggregate volumes. From geometric

formulae and (29)–(30) we obtain

Vc

�
V L

c ~1:00z0:595 PKL{PL
KL

� �
z

2:83|10{3 TL{T
� � ð31Þ

and

Vd

�
V L

d ~1:00{1:75 PKL{PL
KL

� �
z

0:145|10{3 TL{T
� �

,
ð32Þ

for hydrocarbon volume variations along the phase

diagram, with VL
c, d representing Landau-point

volumes. Here VL
c, d are calculated taking laurate

molecules to define chain length from l51.5+1.265n,

for n CH2 groups of the extended hydrocarbon tails

at 10uC (gel phase) (60, 61), and the chain thermal

contraction coefficient. This leads us to micelles of

about 200 molecules at the Landau point. Our results

indicate micellar aggregation number variation fol-

lowing volume changes, as a consequence of fixed

chain volumes. Micelles of either shape have increas-

ing volumes as the temperature is lowered, with

cylinders increasing much faster than discs. The effect

of laurate concentration is opposite on cylinders and

discs, as expected.
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Note that fixed volumes, implying fixed aggrega-

tion numbers, for a concentration at the Landau

point value, would yield

mc~3:57{15:5|10{3 TL{T
� �

ð33Þ

and

md~2:00{4:35|10{3 TL{T
� �

: ð34Þ

Comparison of Equations (29) and (30) with (33)

and (34) with fixed concentration imply that discs

practically do not change their aggregation number,

whereas cylinders suffer a rapid decline in aggrega-

tion number as temperature is increased.

7. Final comments

Our theory suggests the relation of biaxial phases in

lyotropes, as in (6), to a smooth uniaxial micelle form

transition. Also, the direct lyotropic ND–NC transi-

tion, as in (35), is consistent with an abrupt change of

shape of uniaxial micelles. In the case of a smooth

form transition, the biaxial phase is present for a

whole range of possible distributions, from single

Gaussian to bimodal distribution. Different from

other model mixtures considered in the literature,

biaxiality results from the homogeneous mixture of

uniaxial form in the exchange condition.

In the case of a smooth transition model, fitting of

the theoretical critical lines to experimental data of

Yu and Saupe allows the prediction of first-order

transition lines in good agreement with experiment.

The coexistence line is especially good for the ND–

ISO transition. An asymmetrical distribution of

forms, represented through p(l), which could mimic

a stronger increase in cylinder population in the NC

phase, could explain the discrepancy in the adjusted

ISO–NC line. The fitting procedure for the critical

lines also permits calculation of system biaxiality in

close accordance with experimental data.

A geometrical and decanol partition model

for micelles, associated with the fitting parameters,

displays physically consistent microscopic para-

meters, such as anisometries (m), local relative

densities (c) and aggregation numbers. The competi-

tion between temperature effects on the hydrocarbon

chains and micellar aggregation produce a smaller

variation of anisometry than would be expected from

chain length variation alone, in the case of cylinders.

This would explain the features of the phase diagram

for temperatures above 30uC.

Our study also allows a reinterpretation of the

results of neutron scattering on the KL/decanol/water

system, for an uniaxial phase in the proximity of the

biaxial phase (62). From the asymmetry in the detected

distribution of decanol and laurate molecules in the

plane perpendicular to the director, Hendrikx et al.

(62) suggest the existence of different curvatures in that

plane, giving an indication of the biaxiality of the

micelles. However, a different interpretation is possi-

ble. In the case of an NC phase, a mixture of (larger)

cylinders and (smaller) discs and local perpendicular

alignment of the disc symmetry axes would imply more

decanol in the direction parallel to disc surfaces and

less curvature and less decanol in the direction

perpendicular to disc surfaces. However, because the

alignment of discs is only local, in micro regions, the

overall phase is uniaxial.

Finally, in light of our study, we suggest an

interpretation for the lower temperature part of the

phase diagram (below 30uC). The sequences of phases

can be understood, from a qualitative point of view,

from the variations of the micellar object with

temperature and concentration. Hydrocarbon chains

are characterised by chain length contraction with

increasing temperature, and this effect has been

invoked previously to explain the re-entrant nematic

phase (34). It should be stressed that such contrac-

tion, expressed by a negative temperature coefficient,

holds only in the chain direction. The paraffin

volume as a whole has a small positive temperature

coefficient (59). Therefore, while the direction of the

chain is contracting with increasing temperature, the

other directions are expanding, conserving the whole

paraffin volume at a practically constant level over

the temperature range of interest, when the number

of molecules in the micelles does not change. This

would imply that cylinders and discs are more

anisotropic with increasing temperature.

In a cylinder, two dimensions are contracting

while in discs only one dimension is contracting with

temperature. Therefore, cylinders grow faster with

increasing temperature, given the same chain con-

traction. As a consequence, the population of forms,

as well as average quadrupoles, have distortions as a

function of temperature. The ND–Nbx–NC transition

observed with increasing temperature in the lower

part of the phase diagram for PKL.0.26 is, in fact,

expected if the volumes and aggregation numbers of

micelles remain constant with temperature. So the full

sequence observed with increasing temperature at

PKL,0.26, ND–Nbx–NC–Nbx–ND can be rationalised

by an initially constant aggregation number, with

increasing anisometries, followed by a combination

of yet increasing anisometries but decreasing aggre-

gation numbers, by thermal agitation and excluded

volume effects. This accounts for the re-entrant beha-

viour of the NC and Nbx domain in the ND phase.

Note also that, as we reach lower temperatures, chain
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expansion is more favourable to less curved areas and

disc growth.
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